Semiparametric cross entropy for rare-event simulation
نویسندگان
چکیده
The Cross Entropy method is a well-known adaptive importance sampling method for rare-event probability estimation, which requires estimating an optimal importance sampling density within a parametric class. In this article we estimate an optimal importance sampling density within a wider semiparametric class of distributions. We show that this semiparametric version of the Cross Entropy method frequently yields efficient estimators. We illustrate the excellent practical performance of the method with numerical experiments and show that for the problems we consider it typically outperforms alternative schemes by orders of magnitude.
منابع مشابه
Generalized Cross-entropy Methods with Applications to Rare-event Simulation and Optimization
The cross-entropy and minimum cross-entropy methods are well-known Monte Carlo simulation techniques for rare-event probability estimation and optimization. In this paper, we investigate how these methods can be extended to provide a general non-parametric cross-entropy framework based on 1-divergence distance measures. We show how the 2 2 distance, in particular, yields a viable alternative to...
متن کاملEstimation of Rare Event Probabilities Using Cross - Entropy
This paper deals with estimation of probabilities of rare events in static simulation models using a fast adaptive two-stage procedure based on importance sampling and Kullback-Liebler’s cross-entropy (CE). More specifically, at the first stage we estimate the optimal parameter vector in the importance sampling distribution using CE, and at the second stage we estimate the desired rare event pr...
متن کاملMinimum Cross-entropy Methods for Rare-event Simulation
In this paper we apply the minimum cross-entropy method (MinxEnt) for estimating rare-event probabilities for the sum of i.i.d. random variables. MinxEnt is an analogy of the Maximum Entropy Principle in the sense that the objective is to minimize a relative (or cross) entropy of a target density h from an unknown density f under suitable constraints. The main idea is to use the solution to thi...
متن کاملGeneralized Cross-Entropy Methods
The cross-entropy and minimum cross-entropy methods are well-known Monte Carlo simulation techniques for rare-event probability estimation and optimization. In this paper we investigate how these methods can be extended to provide a general non-parametric cross-entropy framework based on φ-divergence distance measures. We show how the χ distance in particular yields a viable alternative to Kull...
متن کاملAdaptive Monte Carlo Methods for Rare Event Simulations
We review two types of adaptive Monte Carlo methods for rare event simulations. These methods are based on importance sampling. The first approach selects importance sampling distributions by minimizing the variance of importance sampling estimator. The second approach selects importance sampling distributions by minimizing the cross entropy to the optimal importance sampling distribution. We a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Probability
دوره 53 شماره
صفحات -
تاریخ انتشار 2016